PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE

(Approved by AICTE & Affiliated to Anna University, Chennai)

Madurai - Sivagangai Highway, Arasanoor, Thirumansolai Post, Sivagangai Dt. - 630 561, Tamilnadu Mobile : 9842102628, 7373002628 Email: info@psyec.edu.in Website : www.psyec.edu.in

City Office : 10, Pandian Saraswathi St, Sivagami Nagar, Narayanapuram, Madurai - 625 014. Telefax- 0452 2682338, Mobile : 98423-02628

Department of Mechanical Engineering,

Academic Year 2022-23

Internal Assessment Test 2

Sub Code: ME8593

Year /SEM: III / V

Date: 28.10.22

Max. Marks: 50 Marks

Prepared by

Duration: 11.20 am- 01.00 pm (90 Minutes)

Sub Name: Design of Machine Elements

Part-A

Answer all the questions

 $(7 \times 2 = 14)$

Part-B	Answer all the questions	(3×12=36)		
7	How is a bolt designated? Give examples	2	3	2
	tensile stress of 40MPa			
6	Determine the safe tensile load for bolt M20 assuming a safe	2	3	2
5	State two types of eccentric welded connections	2	3	4
4	Give advantages of threaded joints	2	3	2
3	State different types of keys.	2	2	2
2	Difference between keys and splines?	2	2	1
1	Give Classification of Couplings	2	2	2
Q. No	Question	M	CO	BTL

Answer all the questions

 $(3 \times 12 = 36)$

Principal

Q. No	Question	Μ	CO	BTL
8.	A rigid type of coupling is used to connect two shafts transmitting 15	12	2	4
	kW at 200 rpm. The shaft, keys and bolts are made of C45 steel and			
	the coupling is of cast iron. Design the couplings.		-	
9.	A bracket is shown in figure is fitted to a wall with 5 bolts, three at the	12	3	3
	top and two at the bottom with all the bolts equally spaced. A. load of			
	20000N is acting at an eccentricity of 200mm. Vertical distances of			
	first and second rows from the hinge point are 50 mm and 250 mm			
	respectively. Select a suitable bolt size for this application			
10	Design a knuckle joint for tie rod of circular section for a maximum	12	3	4
	pull of 70 kN. The ultimate strength of material against tearing is 420			- Alasha
	N/mm ² . The shearing strength of material is 396 N/mm ² . Take FOS=6		-	der en s

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE

(Approved by AICTE & Affiliated to Anna University, Chennai)

Madurai - Sivagangai Highway, Arasanoor, Thirumansolai Post, Sivagangai Dt. - 630 561, Tamilnadu Mobile : 9842102628, 7373002628 Email: info@psyec.edu.in Website : www.psyec.edu.in

City Office : 10, Pandian Saraswathi St, Sivagami Nagar, Narayanapuram, Madural - 625 014. Telefax- 0452 2682338, Mobile : 98423-02628

Department of Mechanical Engineering,

Academic Year 2022-23

Internal Assessment Test II

Sub Code: ME 8692

Year /SEM: III / VI

Max. Marks: 50 Marks

Sub Name: Finite Element Analysis

Date:13.04.2023

Duration: 90 Minutes

Part-A (7×2=14)

Answer all the questions

Q.	Question	М	СО	BTL
NO				
1	List the types of loading act on the structure?	2	2	2
2	Mention the Natural Coordinates?	2	2	1
3	Define Shape function? ?	2	2	2
4	State the Properties of a stiffness Matrix?	2	2	2
5	Write a strain Displacement matrix for CST element	2	3	4
6	State assumptions in the theory of pure torsion	2	3	2
7	What is CST element?	2	3	2

Part-B (3×12=36)

Answer all the questions

Q.	Question	Μ	CO	BTL
No 8.	A steel rod of diameter d=2cm, length L=5 cm and thermal conductivity k=50 W/m ^o C is exposed at one end to a constant temperature of 320 ^o C. The other end is in ambient air of temperature 20 ^o C with a convection coefficient of h=100 W/m ² ^o C. Determine the temperature at the midpoint of the rod	12	2	4

9.

3

12

A thin Plate is subjected to surface traction as shown in fig.14. calculate the global stiffness matrix. Take t=25mm , E=2Gpa and Poisson ratio (v)=0.3

3

3

