DESIGN OF MACHINE ELEMENTS

9

9

9

OBJECTIVES

- To familiarize the various steps involved in the Design Process
- To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.
- To learn to use standard practices and standard data
- To learn to use catalogues and standard machine components
- (Use of PSG Design Data Book is permitted)

UNIT I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS 9

Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers, fits and tolerances - Direct, Bending and torsional stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - curved beams - crane hook and 'C' frame- Factor of safety - theories of failure - Design based on strength and stiffness - stress concentration - Design for variable loading.

UNIT II SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys, keyways and splines - Rigid and flexible couplings.

UNIT III TEMPORARY AND PERMANENT JOINTS

Threaded fastners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints - Welded joints, riveted joints for structures - theory of bonded joints.

UNIT IV ENERGY STORING ELEMENTS AND ENGINE COMPONENTS 9 Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts.

UNIT V BEARINGS

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, -- Selection of Rolling Contact bearings.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

CO1 Explain the influence of steady and variable stresses in machine component design.

- CO2 Apply the concepts of design to shafts, keys and couplings.
- CO3 Apply the concepts of design to temporary and permanent joints.
- CO4 Apply the concepts of design to energy absorbing members, connecting rod and crank shaft.
- CO5 Apply the concepts of design to bearings.

TEXT BOOKS:

- 1. Bhandari V, "Design of Machine Elements", 4 th Edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 9th Edition, Tata McGraw-Hill, 2011.

REFERENCES:

- 1. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum's Outline), 2010
- Ansel Ugural, "Mechanical Design An Integral Approach", 1 st Edition, Tata McGraw-Hill Book Co, 2003.
- 3. P.C. Gope, "Machine Design Fundamental and Application", PHI learning private ltd, New Delhi, 2012.
- 4. R.B. Patel, "Design of Machine Elements", MacMillan Publishers India P Ltd., Tech-Max Educational resources, 2011.
- Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4 th Edition, Wiley, 2005
- 6. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2015.

PRINCIPAL PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE Arasanoor, Thirumansolal P.O-630 561 Sivagangal Dist. Tamilnadu **ME8692**

OBJECTIVES:

- > To introduce the concepts of Mathematical Modeling of Engineering Problems.
- > To appreciate the use of FEM to a range of Engineering Problems.

UNIT I INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

UNIT II ONE-DIMENSIONAL PROBLEMS

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation – Transverse deflections and Natural frequencies of beams.

UNIT III TWO-DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation – Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non-circular shafts – Quadrilateral elements – Higher Order Elements.

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

UNIT V ISOPARAMETRIC FORMULATION

Natural co-ordinate systems – Isoparametric elements – Shape functions for iso parametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

TOTAL: 45 PERIODS

OUTCOMES:

> Upon completion of this course, the students can able to understand different mathematical

> Techniques used in FEM analysis and use of them in Structural and thermal problem

TEXT BOOK:

- 1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill,2005".
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007
- 3. Senthil.S, Panneer doss. R "Finite Element Analysis", Lakshmi Publications, 2013

REFERENCES:

- 1. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004
- 2. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002
- 3. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 4. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990
- 5. Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 2005 (Indian Reprint 2013) *

9

9

9

9