PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE

(Approved by AICTE & Affiliated to Anna University, Chennai)

Madurai - Sivagangai Highway, Arasanoor, Thirumansolai Post, Sivagangai Dt. - 630 561, Tamilnadu Mobile : 9842102628, 7373002628 Email: info@psyec.edu.in Website : www.psyec.edu.in

City Office : 10, Pandian Saraswathi St, Sivagami Nagar, Narayanapuram, Madurai - 625 014. Telefax- 0452 2682338, Mobile : 98423-02628

Department of Mechanical Engineering,

Academic Year 2022-23

Internal Assessment Test I

Sub Code: ME8593

Year /SEM: III / V

Max. Marks: 50 Marks

of the shaft?

Date: 27.09. 22

Duration: 11.20 am- 01.00 pm (90 Minutes)

Sub Name: Design of Machine Elements

Part-A (7×2=14)

Answer all the questions

Q.	Question	Μ	СО	BTL
No				
1	Write down the factors influencing machine Design	2	1	1
2	Describe the material properties of Hardness, Stiffness and	2	1	1
	Resilience			
3	Define Stress Concentration factor	2	1	2
4	Draw the Goodman and Soderberg diagrams and locate the safe	2	1	3
	design regions			
5	What is the main use of woodruff key?	2	2	3
6	Define Equivalent bending moment	2	2	3
7	A shaft of 70 mm long is subjected to shear stress of 40MPa and	2	2	4
	has an angle of twist equal to 0.017 radian. determine the diameter			

Part-B (3×12=36)

Answer all the questions

Q.	Question	М	CO	BTL
No				
8.	A Cantilever rod of length of 120mm with circular cross section is	12	1	- 4
	subjected to a cyclic transverse load varying from -50N to 150N at			
	its free end. Determine the diameter of the rod, by (i) Goodman and			The second
	(ii) Soderberg method using the following data, FOS=2, theoretical			
	stress Concentration factor=1.4, Notch sensitive factor=0.9,			
	Ultimate strength =550MPa, Yield strength is 320 MPa, Endurance			
	limit is 275 MPa, Size correction factor=0.85 and Surface			
	Correctionfactor=0.9			

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE

(Approved by AICTE & Affiliated to Anna University, Chennai)

Madurai - Sivagangai Highway, Arasanoor, Thirumansolai Post, Sivagangai Dt. - 630 561, Tamilnadu Mobile : 9842102628, 7373002628 Email: info@psyec.edu.in Website : www.psyec.edu.in

City Office : 10, Pandian Saraswathi St, Sivagami Nagar, Narayanapuram, Madurai - 625 014. Telefax- 0452 2682338, Mobile : 98423-02628

	-50 KN d d +150 KN			
9.	A bolt is subjected to tensile load of 25 kN and a shear load of 10kN. The yield strength of the bolt material is 300 MPa. Considering a FOS 2.5. Determine the diameter of the bolt using (i) Maximum normal stress theory (ii) Maximum shear Stress theory (iii) Maximum principal strain theory. Take poisson ratio as 0.25.	12	1	3
10	Design rigid flange couplings to transmit a torque of 250 N-m between two coaxial shafts. The shaft is made of alloy steel, flanges are of cast iron and bolts are of steel. Four bolts are used to couple the flanges. The shafts are keyed to the flange hub. The permissible stresses are given below (a) Shear stress on shaft = 100 MPa (b) Bearing or crushing stress on shaft = 250MPa (c) Shear stress on keys = 100 MPa (d) Bearing stress on keys =250MPa (e) Shearing stress on cast iron =200MPa (f) Shear stress on bolts =100MPa After designing the various elements, make a neat sketch of the assembly indicating the important dimensions. Check stresses developed in the various members, if thumb rules are used for fixing the dimensions.	12	3	4

Prepared by

M. Maddam

Principal

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE

(Approved by AICTE & Affiliated to Anna University, Chennai)

Madurai - Sivagangai Highway, Arasanoor, Thirumansolai Post, Sivagangai Dt. - 630 561, Tamilnadu Mobile : 9842102628, 7373002628 Email: info@psyec.edu.in Website : www.psyec.edu.in

City Office : 10, Pandian Saraswathi St, Sivagami Nagar, Narayanapuram, Madural - 625 014. Telefax- 0452 2682338, Mobile : 98423-02628

Department of Mechanical Engineering,

Academic Year 2022-23

Internal Assessment Test I

Sub Code: ME 8692

Year /SEM: III / VI

Max. Marks: 50 Marks

Sub Name: Finite Element Analysis

Date:04.03.2023

Duration: 90 Minutes

Part-A (7×2=14)

Answer all the questions

Q.	Question	Μ	CO	BTL
No				
1	Distinguish Finite Element Analysis	2	1	1
2	Write down the methods are generally associated with Finite	2	1	1
	Element Analysis			
3	Why polynomial type of interpolation functions is mostly	2	1	2
	used in FEM?			
4	Explain Post Processing?	2	1	3
5	Define Rayleigh- Ritz Method	2	1	4
6	Define Shape Function	2	2	4
7	Define Dynamic analysis?	2	2	2

Part-B (3×12=36)

Answer all the questions

Q.	Question	M	CO	BTL
No				
8.	The following differential equation is available for a physical phenomenon $d^2y / dx^2 +50=0$ $0 \le x \le 10$, Trial function is $y=a_1x$ (10-x), Boundary condition are, $y(0)=0$, $Y(10)=0$ Find the value of the parameter al by the following methods, (i) Point collocation	12	1	4

- (ii) sub domain Collocation
- (iii) Least squares
- (iv) Galerkins Method
- 9. A bar of uniform cross section is clamped at one end and left free at the other end it is subjected to a uniform axial load P as shown in fig. Calculate displacement and stress in a bar by using two terms polynomial and three terms polynomial. Compare with exact Solutions

1 3

12

10 For a tapered bar of uniform thickness t=10mm as shown in figure. Predict the displacements at the nodes by forming into two element model. The bar has a mass density $\rho = 7800 \text{ Kg/M}^{3}$, the young's modulus $E = 2x10^{5} \text{ N/mm}^{2}$. In addition to self-weight, the bar is subjected to a point load P= 1 KN at its centre. Also determine the reaction forces at the support.

Faculty Incharge

1-Raattory

12

3

4